Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As the community increases climate model horizontal resolutions and experiments with removing moist convective parameterizations entirely, it is imperative to understand how these advances affect the InterTropical Convergence Zone (ITCZ). We investigate how the ITCZ responds to deactivating parameterized convection at two resolutions, 50 and 6 km, in fixed sea surface temperature, aquaplanet simulations with the NOAA GFDL AM4 atmospheric model. Disabling parameterized convection at 50 km resolution narrows the ITCZ and increases its precipitation minus evaporation (P–E) maximum by ∼78%, whereas at 6 km resolution doing so widens the ITCZ and decreases its P–E maximum by ∼50%. Using the column‐integrated moist static energy budget, we decompose these tropical P–E responses into contributions from changes in atmospheric energy input (AEI), gross moist stability, and gross moisture stratification. At 6 km, the ITCZ weakens due to increased gross moist stability. Disabling the convective parameterization at this finer resolution deepens the circulation, favoring more efficient poleward energy transport out of the deep tropics and reduced precipitation in the core of the ITCZ. Conversely, at 50 km the ITCZ strengthening is primarily driven by AEI, which in turn stems primarily from increased low cloud amount and thus longwave cloud radiative cooling in the Hadley cell subsiding branch. The Hadley circulation overturning intensifies to produce poleward energy fluxes that compensate the longwave cooling, yielding a stronger ITCZ. We further show that the low level diabatic heating profiles over the descending region are instrumental in understanding such diverse responses.more » « less
-
The ocean response to Antarctic Ice Sheet (AIS) mass loss has been extensively studied using numerical models, but less attention has been given to the atmosphere. We examine the global atmospheric response to AIS meltwater in an ensemble of experiments performed using two fully coupled climate models under a pre‐industrial climate. In response to AIS meltwater, the experiments yield cooling from the surface to the tropopause over the subpolar Southern Ocean, warming in the Southern Hemisphere polar stratosphere, and cooling in the upper tropical troposphere. Positive feedbacks, initiated by disrupted ocean‐atmosphere heat exchange, result in a change in the top‐of‐atmosphere radiative balance caused primarily through surface and near‐surface albedo changes. Changes in the atmospheric thermal structure alter the jet streams aloft. The results highlight the global influence of AIS melting on the climate system and the potential for impacts on mid‐latitude climate patterns and delayed regional warming signals.more » « less
-
We investigate a scaling relationship between global tropical cyclone (TC) frequency and the latitude of the intertropical convergence zone (ITCZ) in simulations performed with a 50‐km‐resolution aquaplanet version of the Geophysical Fluid Dynamics Laboratory Atmosphere Model 4.0. The simulations use fixed, zonally symmetric sea surface temperature distributions, including some with uniform warming and cooling perturbations. We find that TC frequency per unit area is proportional to the Coriolis parameter at the ITCZ, following the same scaling introduced in a previous study. We hypothesize that TCs in these simulations originate as precursor disturbances at the ITCZ and intensify into TCs upon reaching sufficiently warm SSTs. We test this interpretation by tracking TC precursors, with different methods based on precipitation and vorticity, and comparing TC precursor frequency with TC frequency and ITCZ latitude. Both tracking methods show that precursors predominantly originate around the poleward edge of the ITCZ, consistent with our hypothesized TC genesis pathway. We also verify that most TC genesis events are immediately preceded by the occurrence of a precursor in the same area. However, precursor frequency is only weakly correlated with the Coriolis parameter at the ITCZ and precursor frequency. The correlation is stronger for vorticity‐based precursors than for precipitation‐based precursors. These mixed results provide partial, but not complete, support for our hypothesized interpretation. They also illustrate how results can depend on the choice of precursor tracking scheme, underlining a need for improved understanding of how best to define and track TC precursors.more » « less
-
null (Ed.)Abstract In this study, detailed characteristics of the leading intraseasonal variability mode of boreal winter surface air temperature (SAT) over the North American (NA) sector are investigated. This intraseasonal SAT mode, characterized by two anomalous centers with an opposite sign—one over central NA and another over east Siberia (ES)/Alaska—bears a great resemblance to the “warm Arctic–cold continent” pattern of the interannual SAT variability over NA. This intraseasonal SAT mode and associated circulation exert a pronounced influence on regional weather extremes, including precipitation over the northwest coast of NA, sea ice concentration over the Chukchi and Bering Seas, and extreme warm and cold events over the NA continent and Arctic region. Surface warming and cooling signals of the intraseasonal SAT mode are connected to temperature anomalies in a deep-tropospheric layer up to 300 hPa with a decreasing amplitude with altitude. Particularly, a coupling between the troposphere and stratosphere is found during evolution of the intraseasonal SAT variability, although whether the stratospheric processes are essential in sustaining the leading intraseasonal SAT mode is difficult to determine based on observations alone. Two origins of wave sources are identified in contributing to vertically propagating planetary waves near Alaska: one over ES/Alaska associated with local intraseasonal variability and another from the subtropical North Pacific via Rossby wave trains induced by tropical convective activity over the western Pacific, possibly associated with the Madden–Julian oscillation.more » « less
An official website of the United States government
